作者:王佳媛
無線移動微型機器人預(yù)期將在通過微創(chuàng)療法治療某些難以觸及、受限和脆弱的體內(nèi)部位方面,精確而有效地發(fā)揮作用。然而,設(shè)計這樣一款無線移動微型機器人,需要綜合考慮多種因素,包含動力、控制、環(huán)境感知、醫(yī)療功能和生物降解性等。德國馬克斯·普朗克智能系統(tǒng)研究所的Metin Sitti團隊研發(fā)了一種基于水凝膠、磁動力和控制的,可酶降解的微型游動裝置(Figure 1)。該裝置可對體內(nèi)微環(huán)境中的病理標志物產(chǎn)生響應(yīng),并遞送藥物,以完成治療和診斷的任務(wù)。研究者擬通過一種雙螺旋結(jié)構(gòu)來負載藥物和實現(xiàn)磁場作用下的游動。最終,研究者基于3D打印和雙光子聚合技術(shù),制備了由甲基丙烯酸明膠和生物功能化超順磁性氧化鐵納米粒子組成的3D微型游動裝置(長度:20 μm,直徑:6 μm)。他們發(fā)現(xiàn),在正常生理濃度下,該微型游動裝置在可被基質(zhì)金屬蛋白酶-2(MMP-2)在118小時內(nèi)完全降解為可溶性的無毒物。該微型游動裝置通過溶脹來實現(xiàn)對病理濃度的MMP-2的快速響應(yīng),從而實現(xiàn)負載藥物的釋放。該微型游動裝置完全降解后,除了可釋放負載的治療診斷學(xué)的藥物,還可作為釋放其它載體,如功能化的納米顆粒等。
WX20190425-100306.png (267.94 KB, 下載次數(shù): 84)
下載附件
2019-4-25 10:04 上傳
Figure 1. Design and 3D fabrication of biodegradable hydrogel microrobotic swimmers.
為了實現(xiàn)3D微型游動裝置的移動,研究者用自制的六線圈電磁裝置來構(gòu)建旋轉(zhuǎn)磁場,并在微型游動裝置的長軸上施加計算機控制的磁矩。我們測定了3D微型游動裝置的失步頻率。該3D微型游動裝置中氧化鐵納米顆粒的載入量為6 mg mL-1,在20 mT條件下和1-6 Hz的范圍內(nèi),每10秒增加一次輸入頻率,步長為1Hz。結(jié)果表明,3D微型游動裝置的游動速度隨激發(fā)頻率的增加呈線性增加(Figure 2a)。在1-3 Hz的頻率范圍內(nèi),微型游動裝置表現(xiàn)出擺動行為。在3-5 Hz范圍內(nèi)觀察到螺旋狀運動。微型游動裝置的步進頻率為6 Hz。通過在5 Hz時驅(qū)動微型游動裝置的長距離運動軌跡,測定的微型游動裝置的平均游動速度(3.36-0.71 μms-1) (Figure 2b)。工作區(qū)內(nèi)的時間恒定的旋轉(zhuǎn)場可實現(xiàn)微型游動裝置的導(dǎo)航。通過磁轉(zhuǎn)向控制,可以控制微型游動裝置從給定的從A點到達D點(Figure 2c)。
WX20190425-100311.png (62.25 KB, 下載次數(shù): 89)
下載附件
2019-4-25 10:04 上傳
Figure 2. Swimming trajectory of a double-helixmicroswimmer under a rotating magnetic field. (A) The step-out frequency of the microswimmerscontaining 6 mg mL-1 iron oxidenanoparticles was found to be around 6 Hz. (B)Image sequence of the hydrogel microswimmer actuated under a rotating magneticfield with the magnetic field strength and excitation frequency being 20 mT and5 Hz, respectively. The average velocity of the microswimmers was found to be3.36 ± 0.71 μm s-1. (C) Magnetic steering control of themicroswimmer. A microswimmer is given the task of reaching each checkpoint fromA to D.
據(jù)報道,在健康個體中的不同組織中,MMP-2以不同濃度存在,但通常范圍在140-200 ngmL-1范圍內(nèi)。在高濃度MMP-2條件下(100 μgmL-1),在37℃條件下,微型游動裝置可在1小時內(nèi)完全降解,并且其完全降解時間是初始MMP-2濃度的函數(shù)(Figure 3a, b)。與體內(nèi)更接近濃度條件下(如4 μgmL-1),該微型游動裝置完全降解約需要5小時,在另外濃度條件(0.500 μg mL-1),該微型游動裝置完全降解約需要67小時,在生理水平下(0.125 μgmL-1),降解時間為118小時。由于不同組織的特異性蛋白酶和其他局部條件存在差異,應(yīng)根據(jù)微型游動裝置應(yīng)用的目標組織,研究該微型游動裝置的降解動力學(xué)。近年來,基于鹽-侵蝕的無機微型游動裝置在體內(nèi)環(huán)境中的降解是一種常規(guī)途徑。本研究提出了一種基于生理環(huán)境中酶條件下的降解新途徑,并且該過程的降解產(chǎn)物完全無毒(Figure 3c)。
WX20190425-100318.png (248.98 KB, 下載次數(shù): 93)
下載附件
2019-4-25 10:04 上傳
Figure 3. Biodegradation of the hydrogel microswimmers by the MMP-2enzyme. (A) DIC images of adegrading microswimmer array in the presence of 4 μg mL-1 enzyme.Degradation starts with the rapid swell of the microswimmers followed by thecollapse of the entire network. (B) Enzymatic degradation of the microswimmers.At the physiological level, MMP-2 degrades the microswimmers within 118 h.Enzymatic susceptibility introduces a concept of operational lifetime, definedas the time period that microswimmer preserves its original morphology forproper navigation. The operational lifetime is a function of the enzymeconcentration in the microenvironment. Data are presented as mean ± standarddeviation. (C) Live (green) and dead (red) SKBR3 breast cancer cells treatedwith the degradation products of the microswimmers. (D) Quantitative analysisof the acute toxicity induced by the degradation products of the microswimmersin comparison with 5 μg mL-1 iron oxide nanoparticles and untreatedcells. Data are presented as mean ± standard deviation.
MMP-2酶可以作為一種有價值的生物標志物,用于微型游動裝置所感知組織的病理狀態(tài)和發(fā)揮作用。初期,高濃度的MMP-2可作為微型游動裝置釋放藥物的開關(guān)。當組織的局部MMP-2濃度升高時,初期微型游動裝置的會快速溶脹,并釋放藥物。由于藥物釋放速度與溶脹程度有關(guān),所以初始MMP-2酶濃度可以調(diào)節(jié)微型游動裝置的釋放動力學(xué)。溶脹動力學(xué)與初始酶濃度的關(guān)系(Figure 4a)。在酶濃度為0.250 μgmL-1時,微型游動裝置在加入酶20分鐘后開始腫脹。在0.5和1 μgmL-1時,微型游動裝置在接觸酶時就會開始溶脹。此外,微型游動裝置對病理性MMP-2濃度表現(xiàn)出高度的敏感性,而在生理條件下,微型游動裝置可保持原來的大小,表明微型游動裝置具有MMP-2酶響應(yīng)行為。水凝膠的降解對于充分利用水凝膠中的藥物,具有重要意義。如果材料不降解,將有近一半的藥物留在水凝膠網(wǎng)絡(luò)內(nèi),造成利用率低。該研究制備的微型游動裝置可完全降解,從而具有較高的藥物利用率(Figure 4b, c)。
WX20190425-100331.png (125.59 KB, 下載次數(shù): 113)
下載附件
2019-4-25 10:04 上傳
Figure 4. Enzymatically-controlled drug release from the hydrogelmicroswimmers. (A)Elevated concentrations of MMP-2 cause rapid swelling of the microswimmer body,thereby acting as a switch for accelerated drug release. Data are presented asmean ± standard deviation. (B) At 1 μg mL-1 MMP-2 concentration,accelerated drug release in the first few hours (the pale pink region) isattributed to swelling-mediated mesh size increase. At the end of two days,almost all the payload is released from the degraded microswimmers whereas halfof the content is retained in the non-degraded one, which severely reduces thebioavailability of a significant portion of the drug to be delivered (palegreen region). Data as presented with mean ± standard deviation. (C)Epifluorescence images of microswimmers with loaded dextran-FITC cargo used asa model macromolecular drug equivalent. Enhanced drug bioavailability isevidenced by the enzymatic degradation of the network, which releases itsentire content.
微型游動裝置中水凝膠的降解可進一步釋放磁性納米顆粒,這些納米顆粒原用來為運動提供磁性力矩。我們設(shè)想,用這些局部釋放的磁性造影劑對腫瘤細胞進行靶向標記,可以后續(xù)評估前期治療性藥物釋放的效果。ERBB2受體在乳腺癌細胞株SKBR3中過表達,我們對納米顆粒表面修飾anti-ErbB 2 抗體,可靶向結(jié)合ERBB2受體,從而標記腫瘤細胞。為了便于體外分析,納米顆粒也同時被熒光基團修飾(Figure 5a)。與未修飾的納米顆粒類似,抗體標記的納米顆粒仍可嵌入到微型游動裝置內(nèi)(Figure 5b)。改性的納米粒子的加入不會影響微型游動裝置的整體游動性能。我們研究了通過MMP-2酶介導(dǎo)的微型游動裝置體內(nèi)降解后釋放的磁性納米顆粒的細胞標記性能。微型游動裝置降解后,釋放到環(huán)境中的功能性納米顆粒可標記39.3%的SKBR3細胞,用熒光活化細胞分選法檢測(Figure 5c和S 14)。另一方面,未經(jīng)表面修飾的納米顆粒也可標記約9.5%的細胞,這表明細胞與納米顆粒之間也存在著一定非特異性相互作用(Figure 5d)。
WX20190425-100337.png (147.97 KB, 下載次數(shù): 97)
下載附件
2019-4-25 10:04 上傳
Figure 5. Targeted cell labeling with the magnetic nanoparticles releasedfrom collapsed microswimmers towards diagnostic in vivo imaging. (A) The design of superparamagnetic iron oxidenanoparticles of 50 nm size functionalized with a fluorophore and anti-ErbB 2antibody for targeted labeling of ERBB2-overexpressing breast cancer SKBR3cells. (B) Epifluorescence image of microswimmers embedded with the nanoparticles.(C) Targeted labeling of SKBR3 with the anti-ErbB 2 modified magneticnanoparticles released upon the MMP-2-mediated degradation of themicroswimmers. In the absence of anti-ErbB 2, the nanoparticles fail to targetSKBR3 cells.
本研究是由德國馬克斯·普朗克智能系統(tǒng)研究所的MetinSitti團隊完成,并于2019年3月在線發(fā)表于ACS Nano。
論文信息:Hakan Ceylan, Immihan Ceren Yasa, Oncay Yasa, Ahmet Fatih Tabak, Joshua Giltinan, andMetin Sitti*. 3D-Printed Biodegradable Microswimmer for Theranostic CargoDelivery and Release. ACS Nano. 13(3):3353-3362.
供稿:王佳媛
|