代表論文: [1] T. Xu, Y. Cui, S. Ma, J. Wang, C. Liu, Exploring the inclined angle limit of fabricating unsupported rods structures by pulse hot-wire arc additive manufacturing, Journal of Materials Processing Technology (2021) 117160. [2] T. Lu, Y. Cui, L. Xue, H. Zhang, C. Liu, Eliminating microstructure and mechanical anisotropy of Ti-6.5 Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition, Journal of Materials Science (2021) 1-17. [3] Z. Li, Y. Cui, Z. Yu, C. Liu, In-situ fabrication of Ti2AlNb-based alloy through double-wire arc additive manufacturing, Journal of Alloys and Compounds (2021) 160021. [4] R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen, C. Liu, Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate, Materials & Design 199 (2021) 109370. [5] T. Xu, S. Tang, C. Liu, Z. Li, H. Fan, S. Ma, Obtaining large-size pyramidal lattice cell structures by pulse wire arc additive manufacturing, Materials & Design 187 (2020) 108401. [6] J. Wang, Y. Cui, C. Liu, Z. Li, Q. Wu, D. Fang, Understanding internal defects in Mo fabricated by wire arc additive manufacturing through 3D computed tomography, Journal of Alloys and Compounds 840 (2020) 155753. [7] T. Lu, C. Liu, Z. Li, Q. Wu, J. Wang, T. Xu, J. Liu, H. Wang, S. Ma, Hot-wire arc additive manufacturing Ti–6.5 Al–2Zr–1Mo–1V titanium alloy: Pore characterization, microstructural evolution, and mechanical properties, Journal of Alloys and Compounds 817 (2020) 153334. [8] Q. Wu, T. Mukherjee, C. Liu, J. Lu, T. DebRoy, Residual stresses and distortion in the patterned printing of titanium and nickel alloys, Additive Manufacturing 29 (2019) 100808. [9] Z. Li, C. Liu, T. Xu, L. Ji, D. Wang, J. Lu, S. Ma, H. Fan, Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy, Materials Science and Engineering: A 742 (2019) 287-294. [10] Q. Wu, Z. Ma, G. Chen, C. Liu, D. Ma, S. Ma, Obtaining fine microstructure and unsupported overhangs by low heat input pulse arc additive manufacturing, Journal of Manufacturing Processes 27 (2017) 198-206. [11] Q. Wu, J. Lu, C. Liu, X. Shi, Q. Ma, S. Tang, H. Fan, S. Ma, Obtaining uniform deposition with variable wire feeding direction during wire-feed additive manufacturing, Materials and Manufacturing Processes 32(16) (2017) 1881-1886. [12] X. Shi, S. Ma, C. Liu, Q. Wu, J. Lu, Y. Liu, W. Shi, Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties, Materials Science and Engineering: A 684 (2017) 196-204. [13] X. Shi, S. Ma, C. Liu, Q. Wu, Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks, Optics & Laser Technology 90 (2017) 71-79. [14] C. Liu, L. Yu, A. Zhang, X. Tian, D. Liu, S. Ma, Beta heat treatment of laser melting deposited high strength near β titanium alloy, Materials Science and Engineering: A 673 (2016) 185-192. [15] C. Liu, Y. Lu, X. Tian, D. Liu, Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys, Materials Science and Engineering: A 661 (2016) 145-151. [16] J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, J. Lu, Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency, Materials 9(10) (2016) 823. 研究項(xiàng)目: 1基于增材制造的高溫鈦合金單晶材料制備-結(jié)構(gòu)制造一體化技術(shù),國家自然科學(xué)基金面上項(xiàng)目,2019.01-2022.12 2高性能輕質(zhì)合金****增材制造技術(shù),裝備發(fā)展部預(yù)研共用技術(shù)項(xiàng)目,2012.01-2024.12 3第六屆青年人才托舉工程(機(jī)械工程學(xué)會),中國科協(xié), 2021.1-2023.12 4大型*****電弧增材制造技術(shù),裝備發(fā)展部預(yù)研共用技術(shù)項(xiàng)目,2017.12-2020.12 5金屬***增材制造技術(shù),軍委科技委創(chuàng)新特區(qū)項(xiàng)目,2019.10-2020.12 6基于智能增材制造的飛機(jī)****設(shè)計(jì)與分析技術(shù),國防基礎(chǔ)科研重點(diǎn)項(xiàng)目(課題), 2018.01-2020.12 |