1.jpg (29.71 KB, 下載次數(shù): 114)
下載附件
2021-1-23 13:27 上傳
經(jīng)過三十多年的發(fā)展,增材制造(3D打。┮呀(jīng)成為主流的制造工藝。增材制造通過直接基于3D模型逐層添加材料來制造產(chǎn)品。與傳統(tǒng)制造技術(shù)相比,它能夠制造復(fù)雜的零件,并允許更多的設(shè)計(jì)優(yōu)化自由度。機(jī)器學(xué)習(xí)現(xiàn)在是一種熱門技術(shù),已被用于醫(yī)學(xué)診斷、圖像處理、預(yù)測(cè)、分類、學(xué)習(xí)關(guān)聯(lián)、回歸等領(lǐng)域。目前,機(jī)器學(xué)習(xí)在制造業(yè)中的應(yīng)用越來越受到關(guān)注,包括增材制造。近期,由奧克蘭大學(xué)的Jingchao Jiang博士,山東大學(xué)的Bin Zou,Jikai Liu教授以及佐治亞理工的David Rosen教授在International Journal of Computer Integrated Manufacturing(影響因子2.861)上發(fā)起了Machine learning in Additive Manufacturing?D壳罢谡鞲逯。
征稿包含以下主題但不限于以下主題:
●Artificial intelligence in AM
●Machine learning aided design for AM
●Machine learning for AM optimization
●Machine learning for AM decision making
●Machine learning for AM process planning
●Machine learning for 3D bioprinting
●Machine learning in hybrid additive-subtractive manufacturing
●State-of-the-art and new perspectives on machine learning in AM
●Artificial intelligence integrated AM systems
●Machine learning applications in AM
截稿日期為9月30日,期間如有疑問可隨時(shí)聯(lián)系特刊主編。
Jingchao Jiang, Email: jjia547@aucklanduni.ac.nz
Bin Zou, Email: zb78@sdu.edu.cn
Jikai Liu, Email: jikai_liu@sdu.edu.cn
期刊鏈接:https://www.tandfonline.com/toc/tcim20/current
特刊Call for papers鏈接:https://www.callforpapers.co.uk/machine-learning-manufacturing
全球科學(xué)家發(fā)布的涉及到3D打印的科研成果論文、專利,盡在南極熊“3D打印科研”專欄http://m.lhkhtyz.com/forum-231-1.html
|
上一篇:天津大學(xué)最新研發(fā):3D打印軟性機(jī)器人下一篇:愛荷華州立大學(xué)——聚二甲基硅氧烷(PDMS)的電動(dòng)噴墨打印
|